CS 58500 — Theoretical Computer
Science Toolkit

Lecture 3 (01/27)
Concentration Inequality Il .~ __
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Today’s Lecture

-  Chernoff Bound (Additive Form)
«  Chernoff Bound (Multiplicative Form)

- Application: Discrepancy Theory

Remark: in many TCS papers,
“Chernoff bound” = exponential convergence = Chernoff/Hoeffding/Bernstein inequality
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Question

Suppose you have a coin with unknown biased probability p € [0, 1]. How many flips to
estimate p with approximation error +€?

- Flip n times and output p := # Heads/n

- Suppose we want to achieve the guarantee
Prl[p —pl <e]=1-6

« How small can we choose n?
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Question

Suppose you have a coin with unknown biased probability p € [0, 1]. How many flips to
estimate p with approximation error +€?

Define iid random variables X4, X5, ..., X;, such that

Y. 1 with probability p
Y“ |0 with probability 1 —p

For Z = X; + -+ X,,, how large should n be such that
Pr[|Z —pn| =en] <6

E[Z] = pn
Var[X;] = p — p? and Var[Z] = np(1 — p)

Januar y 27,2026 3



Question

Suppose you have a coin with unknown biased probability p € [0, 1]. How many flips to
estimate p with approximation error +€?

E|Z] = pn and Var|[Z] = np(1 — p)

Chebyshev inequality:

Var|Z
Pr(|Z — E[Z]]| = t] < tz[ |
np(1—-p) p(1-p)
Pr[|Z —pn| = en] < oz = o S )
1—p)1
. pd-pl

€2 6
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Chernoff Bound

Let X; := X; — E[X;] be the centered version of X; and Z' :== X] + -+ X;, = Z — E[Z]

Consider the moment generating function:

E[e?”'] = E[e# 4] = B [ﬂ] = | [2[]

E[e?Z'] ILE [egx‘!]
eOen = eGen

By Markov inequality,

Pr(Z' = en] = Pr[ef? > ef€"] <

This inequality holds for any 8 > 0. So, we can optimize over t to get the tightest bound:

Pr[Z' > en] < inf e~0€" ‘ ‘ E [eex{]
6>0 |
l
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Chernoff Bound

Lemma (MGF bound). If a < X < b then for every 8 € R we have
E[eB(X—[E[X])] < eez(b—a)2/8

Proof.

Wlog, we may assume E[X] = 0and 6 =0

Define the log-MGF:
p(6) = log E[¢%*]
Y(0) =logE[1] =0

We compute the derivatives:

E|Xeb%]

IE[QBX] !

P'(0) =

l/)”(g) _ IE[XZeHX] ~ <IE[X€9X]>2

[E[QOX] E[QGX]
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Chernoff Bound

Lemma (MGF bound). If a < X < b then for every 8 € R we have
E[eB(X—IE[X])] < eez(b—a)2/8

Proof.

We compute the derivatives:

E|Xeb*]

]E[QBX] !
Y'(0) = E[X] = 0 by assumption

2
E|X2e%%] [E|Xeb*] Looks like a
E[efX] \ E[efX] variance

Y'(0) = Y (0) =

Let 1 := Law(X). Then we can define its exponential tilt ug:

up(dx) e

u(dx) — E[eb%]

You can easily check that ugy is indeed a probability distribution forany 8 = 0
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Chernoff Bound

Lemma (MGF bound). If a < X < b then for every 8 € R we have
E[eB(X—IE[X])] < eez(b—a)2/8

Proof.

We compute the derivatives:
l/},(g) — ]E‘LLQ [X]) l/)”(e) — Varﬂg [X]

Recall the range bound for variance:
Y"(0) = Var, [X] < (b—a)*/4

Now, we integrate "’ twice from 0 to 8 and using the fact that y(0) = y'(0) = 0:

6 6
j W (DdA = '(0), j W (DA = $(6)
0 0

0 (s 0 $1 GS 92
N lp(e):fo fow (A)d)tdssjo fOZ(b—a)zd/lds=J0 > (b - @)ds = — (b~ )?
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Chernoff Bound

Lemma (MGF bound). If a < X < b then for every 8 € R we have
E[eB(X—IE[X])] < eez(b—a)2/8

This lemma implies that

Pr[Z' = en] < elnfe“ge"l_[IE[ 0x; | < 5258 Oen(g0%(b-a)* /8)

_ oo N2
—exp(ér;g Oen + 0%(b — a) n/8)

4¢e ]
(b—a)?’

The quadratic function is minimized at 6 =

2€2

Pr[Z —E[Z] > en] = Pr[Z' > en] < e b-@7"

What about the other direction (the lower tail)?
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Chernoff Bound

Lemma (MGF bound). If a < X < b then for every 8 € R we have
E[eB(X—IE[X])] < eez(b—a)2/8

For the lower tail:
Pr[Z — E[Z] < —en] = Pr[Z' < —en]
= Pr[e?? = e 0" (6 <0)

< infetoen ‘ ‘ E [eexi’]
9<0 |
l

= exp (éch, fen + 6%(b — a)zn/S)

B 2€?
= exp <— b2 n)
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Chernoff Bound (Additive Form)

Theorem (Hoeffding’s inequality).

Let X4, ..., X,, be independent real random variables such that a; < X; < b; forall i € [n].
Let Z := )i~ ; X; and introduce the variance proxy

1 n
V = ZE(bl — al-)z .
1=1

Pr[|Z — E[Z]| = tyv] < 2e7t/2  vt>0

Then

» For our biased coin problem, X; € {0,1} and thus, v = n/4 Chebyshev:

p(1-p)1
)

) 1 2
Pr[|Z —E[Z]| = en] <2e7 ¢ "<§f = n> 2—6210g<g> n =
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Improvement?

In the whole proof, there are only two inequalities:

1. By Markov inequality, we obtain the so-called Laplace transform:

Priz —E[Z] 2 t] < 525 et 1_[ E[ee(xi_m[xi])] ) Cramér’s theorem:
i

This is tight for iid sum
Pr{Z — E[Z] < —t] < jnf e 1_[ E[ 0 Xi-ELXiD)]

l

2. MGF bound: Ifa < X < bthen for every 8 € R we have
E[ee(x—m[x])] < eGZ(b—a)Z/S

In our case, X3, ..., X,, are iid Bernoulli random variables
E|lefXiP)]| = pefU-P) + (1 —p)e % = e797(1 + (e — 1)p)
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Improvement?

Pr{Z — E[Z] = t] < inf e~ 1_[ E[ 0 Xi-ELXiD)]

l

 jufe e o1+ (e - p)'

< inf e‘tee‘"PQe"P(Be—l)
0=0

= exp (—np + éi)gg —(t+np)o + npee)

Pr[Z — E[Z] = t] < exp (—np — (t + np) log (t ;;p) + (t + np))

t+n
= exp (—(t + np) log( - p) + t>

t+np).

The minimizeris at 8 = log( -
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Improvement?

Pr{Z — E[Z] = t] < jnf e~ 1_[ E[® XiELXiD)]
B i

= jafe o1+ (o8~ 1p)’
< inf e~t0 18 gnp(e®-1)
:EN

= exp (—np + ggg —(t+np)o + npee)

t+np)_

The minimizeris at 8 = log( -

tnp +n
Pr|Z — E|Z] = tnp] < exp (—np — (tnp + np) log< pnp p> + (tnp + np))
= exp(—(1 + t)nplog(1 + t) + tnp)

et np
- ((1 + t)1+t)
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Improvement?

Pr{Z — E[Z] < —tnp] < jnf ¥ 1_[ E[ e (Xi=ELXiD)]
B i

= égg etnpee_npe(l + (60 _ 1)p)n

< éi;nf etnpee—npeenp(ee—l)
<0

= exp (—np + ggg(t — 1)npf + npee)

The minimizeris at 8 = log(1 — t):
Pr(Z — E[Z] < —tnp] < exp(—np — (1 — t)nplog(1l —t) + (1 — t)np)
= exp(—(1 — t)nplog(1 —t) — tnp)

et np
N <<1 - t)H)
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Chernoff Bound (Multiplicative Form)

Theorem (Chernoff bound).

Let X4, ..., X,, beiid Bernoulli random variables with E[X;] = p. Let Z ==} | X;. Then

(1 + i+t

-t

t np
e
Pr[Z = (1 + t)np] < ( ) vVt >0

e
(1-t)t-t

np
Pr[Z < (1 —t)np] < ( > vt € [0,1]

Notice the asymmetric tails:

For the right tail, when t is large, it behaves like t ~¢ (i.e., a Gamma distribution)

For the left tail, when t is small, it behaves like e~ t*/2 (i.e., a Gaussian distribution)

log(-:) =—t—(1 -t log(1—t) =—t—(1—-t)(=t—t2/2+0(t3)) = —t?/2 + 0(t%)
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Chernoff Bound (Multiplicative Form)

© TZL

(Source: Joel A. Tropp)
Z ~ Bin(n,p) — Poi(np) forlargen

The probability of a Poisson random variable X ~ Poi(np) at k > np is

- K
€ "pk('np) — p-0(klogk) » o—0(k?)
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Chernoff Bound (Multiplicative Form)

Theorem (Chernoff bound, user-friendly version).

Let X4, ..., X,, be independent Bernoulli random variables with E[X;] = p;. Let Z :=
% 1 X;and u := E[Z]. Then 2
Prl[Z=(1+tu] < e‘zt_+t“ Vt=>0
PriZ < (1—tu] <e t°H/2 viel0,1]
Moreover,
Pr|Z — u| = tu] < 2e~t°H/3 vt e[0,1]

Januar y 27,2026 18



Chernoff Bound (Multiplicative Form)

Theorem (Chernoff bound, user-friendly version).

Let X4, ..., X,, be independent Bernoulli random variables with E[X;] = p;. Let Z :=

% 1 X;and u := E[Z]. Then 2
t
PrlZ=>(1+0u] <e z+#t! vt=>0

Proof.

log( e’ )=t—(1+t)log(1+t)

(1+)1+t

2t
log(1+1¢t) > P

—t2
2+t

t—(A+0log(l+6) St — 1+ =
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Chernoff Bound (Multiplicative Form)

Theorem (Chernoff bound, user-friendly version).

Let X4, ..., X,, be independent Bernoulli random variables with E[X;] = p;. Let Z :=
% 1 X;and u := E[Z]. Then

Pr|Z — u| = tu] < 2e t°H/3 vt e[0,1]

> For our biased coin question,
€’n

3 2
Pr[|Z — np| = (¢/p)np] < 2exp <—§> <§ = n= E—flog <5>
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Chernoff Bound (Multiplicative Form)

Theorem (Chernoff for positive, bounded random variables).

Let X4, ..., X,, be independent random variables such that 0 < X; < b foralli € [n]. Let
Z =Y, X;and u = E[Z]. Then

A u/b
Pr(Z = (1 +t)u] < ((1 n t)1+t) vVt =0

o=t u/b
PriZ<(1-tu] < ((1 — t)l‘t) vt € [0,1]

Januar y 27,2026 22



Proof of Chernoff for Positive Bounded RVs

When X is a Bernoulli random variable,
IE[eQX] =1+’ -1p

If we only know 0 < X < b, then by the convexity of e?* and Jensen inequality,
e <1+ (e —1)x/b Vx€[0,b]

Ox

Thus,

efb — 1

b

Ele®*] <1+ E[X]

Following the same proof, you’ll get the term involving

b __ 1 e@b

_ b _
ﬂ<1+e - IE[Xi]>=exp<Zlog(1+ - 1IE[Xi]>>SeXp<28 bb 1IE[Xi]>

i
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Chernoff Bound (Additive Form)

Theorem (Chernoff-Hoeffding inequality).

Let X4, ..., X,, beiid Bernoulli random variables with E[X;] = p. Let Z ==} | X;. Then

Pr[Z = (p + €)n] < e ™P@+ellp)  ye € (0,1 —p)
Pr(Z < (p —e)u] < e ™PP=€llP)  ve € (0,p)

D(pllq) is the relative entropy defined as:

1 —
D(pllg) = plog (g) + (1 —p)log (TZ)

Proof idea:
Apply the Laplace transform and use the closed-form of MGF (same as our proofs)

No more approximation and directly optimize it
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Application: Discrepancy Theory

Given a hypergraph (or a set system), how to color each vertex in red or blue such that in each
hyperedge (or set), the number of red vertices is roughly equal to the number of blue vertices?

Universe U = {1,2, ..., n}
Set system F = {5, S5, ..., S, }

For a coloring x: [n] — {—1,1}, its discrepancy is defined as: “‘

Disc(y) = irél[%

Zjes)((j)

And the discrepancy of the set system is defined as

Disc(F) = n}(in Disc(y) Disc(F) = 1
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Application: Discrepancy Theory

Lemma. Let F be a collection of m subsets of [n]. Then there is a coloring y: [n] = {—1,1} such
that Disc(y) = 0(y/nlogm).

Proof.

Let y be a uniformly random coloring, i.e., we assign 1 to each element iid uniformly at random
E[x(i)] = 0foranyi € [n]

For each subset S € F, let Z = ;¢ x(i). By Hoeffding’s inequality,

1
Prliz) = V9] < 2¢7/2,  v=7 ) (1-(-D) =I5 <7
IES

t:=2Jlogm = Pr||Z| = 2/nlogm| < 2e721°8™ = 2/m?

By union bound over all m subsets, with probability > 1 —m - 2/m? > 0, disc(y) < 2 /nlogm
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Application: Discrepancy Theory

Lemma. Let F be a collection of m subsets of [n]. Then there is a coloring y: [n] = {—1,1} such
that Disc(y) = 0(y/nlogm).

This bound is not tight!

Theorem (Six standard deviations suffice, Spencer ’85).

Let F be a collection of n subsets of [n]. Then there is a coloring y: [n] — {—1,1} such that
Disc(y) < 6+/n.

More generally, if F is a collection of m = n subsets of [n]. Then there is a coloring y: [n] —
{—1,1} such that Disc(y) < 0(\/11 log(Zm/n)).
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Bernstein Inequality

Theorem (Bernstein).

Let X4, ..., X,, be independent random variables such that | X; — E|X;]| < b foralli € [n].
Let Z :== ),I.; X;. Then

t% /2
Var|Z] + bt/3

Pr[|Z — E[Z]| = t] SZexp(— ) vt >0

For large t, the tail bound looks like exp(— 2t/(3b)), an exponential tail

For small or medium t, the tail bound looks like exp(— t?/(2Var[Z])), a Gaussian tail with the
true variance (instead of the variance proxy v in Hoeffding’s inequality)
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