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• Chernoff Bound (Additive Form)

• Chernoff Bound (Multiplicative Form)

• Application: Discrepancy Theory

Remark: in many TCS papers, 

“Chernoff bound” ≈ exponential convergence ≈ Chernoff/Hoeffding/Bernstein inequality
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Suppose you have a coin with unknown biased probability 𝑝 ∈ [0, 1]. How many flips to 

estimate 𝑝 with approximation error ±𝜖?

• Flip 𝑛 times and output Ƹ𝑝 ≔ # ΤHeads 𝑛

• Suppose we want to achieve the guarantee

Pr Ƹ𝑝 − 𝑝 ≤ 𝜖 ≥ 1 − 𝛿

• How small can we choose 𝑛?
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Suppose you have a coin with unknown biased probability 𝑝 ∈ [0, 1]. How many flips to 

estimate 𝑝 with approximation error ±𝜖?

• Define iid random variables 𝑋1, 𝑋2, … , 𝑋𝑛 such that

𝑋𝑖 ≔ ቊ
1 with probability 𝑝 
0 with probability 1 − 𝑝

• For 𝑍 ≔ 𝑋1 + ⋯ + 𝑋𝑛, how large should 𝑛 be such that

Pr 𝑍 − 𝑝𝑛 ≥ 𝜖𝑛 ≤ 𝛿

• 𝔼 𝑍 = 𝑝𝑛

• Var 𝑋𝑖 = 𝑝 − 𝑝2 and Var 𝑍 = 𝑛𝑝 1 − 𝑝
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Suppose you have a coin with unknown biased probability 𝑝 ∈ [0, 1]. How many flips to 

estimate 𝑝 with approximation error ±𝜖?

• 𝔼 𝑍 = 𝑝𝑛 and Var 𝑍 = 𝑛𝑝 1 − 𝑝

• Chebyshev inequality:

Pr 𝑍 − 𝔼 𝑍 ≥ 𝑡 ≤
Var 𝑍

𝑡2

Pr 𝑍 − 𝑝𝑛 ≥ 𝜖𝑛 ≤
𝑛𝑝 1 − 𝑝

𝜖2𝑛2
=

𝑝 1 − 𝑝

𝜖2𝑛
≤ 𝛿

𝑛 ≥
𝑝 1 − 𝑝

𝜖2

1

𝛿
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• Let 𝑋𝑖
′ ≔ 𝑋𝑖 − 𝔼 𝑋𝑖  be the centered version of 𝑋𝑖  and 𝑍′ ≔ 𝑋1

′ + ⋯ + 𝑋𝑛
′ = 𝑍 − 𝔼 𝑍

• Consider the moment generating function:

𝔼 𝑒𝜃𝑍′
= 𝔼 𝑒𝜃 σ𝑖 𝑋𝑖

′
= 𝔼 ෑ

𝑖

𝑒𝜃𝑋𝑖
′

= ෑ

𝑖

𝔼 𝑒𝜃𝑋𝑖
′

• By Markov inequality,

Pr 𝑍′ ≥ 𝜖𝑛 = Pr 𝑒𝜃𝑍′
≥ 𝑒𝜃𝜖𝑛 ≤

𝔼 𝑒𝜃𝑍′

𝑒𝜃𝜖𝑛
=

ς𝑖 𝔼 𝑒𝜃𝑋𝑖
′

𝑒𝜃𝜖𝑛

• This inequality holds for any 𝜃 > 0. So, we can optimize over 𝑡 to get the tightest bound:

Pr 𝑍′ ≥ 𝜖𝑛 ≤ inf
𝜃>0

𝑒−𝜃𝜖𝑛 ෑ

𝑖

𝔼 𝑒𝜃𝑋𝑖
′
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Lemma (MGF bound).  If 𝑎 ≤ 𝑋 ≤ 𝑏 then for every 𝜃 ∈ ℝ we have 

𝔼 𝑒𝜃 𝑋−𝔼 𝑋 ≤ 𝑒 Τ𝜃2 𝑏−𝑎 2 8

Proof.

• Wlog, we may assume 𝔼 𝑋 = 0 and 𝜃 ≥ 0

• Define the log-MGF:

𝜓 𝜃 ≔ log 𝔼 𝑒𝜃𝑋

• 𝜓 0 = log 𝔼 1 = 0

• We compute the derivatives:

𝜓′ 𝜃 =
𝔼 𝑋𝑒𝜃𝑋

𝔼 𝑒𝜃𝑋
,  𝜓′′ 𝜃 =

𝔼 𝑋2𝑒𝜃𝑋

𝔼 𝑒𝜃𝑋
−

𝔼 𝑋𝑒𝜃𝑋

𝔼 𝑒𝜃𝑋

2
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Lemma (MGF bound).  If 𝑎 ≤ 𝑋 ≤ 𝑏 then for every 𝜃 ∈ ℝ we have 

𝔼 𝑒𝜃 𝑋−𝔼 𝑋 ≤ 𝑒 Τ𝜃2 𝑏−𝑎 2 8

Proof.

• We compute the derivatives:

𝜓′ 𝜃 =
𝔼 𝑋𝑒𝜃𝑋

𝔼 𝑒𝜃𝑋
,  𝜓′′ 𝜃 =

𝔼 𝑋2𝑒𝜃𝑋

𝔼 𝑒𝜃𝑋
−

𝔼 𝑋𝑒𝜃𝑋

𝔼 𝑒𝜃𝑋

2

• 𝜓′ 0 = 𝔼 𝑋 = 0 by assumption

• Let 𝜇 ≔ Law 𝑋 . Then we can define its exponential tilt 𝜇𝜃:

𝜇𝜃 d𝑥

𝜇 d𝑥
≔

𝑒𝜃𝑥

𝔼 𝑒𝜃𝑋

• You can easily check that 𝜇𝜃  is indeed a probability distribution for any 𝜃 ≥ 0

Looks like a 
variance
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Lemma (MGF bound).  If 𝑎 ≤ 𝑋 ≤ 𝑏 then for every 𝜃 ∈ ℝ we have 

𝔼 𝑒𝜃 𝑋−𝔼 𝑋 ≤ 𝑒 Τ𝜃2 𝑏−𝑎 2 8

Proof.

• We compute the derivatives:

𝜓′ 𝜃 = 𝔼𝜇𝜃
𝑋 ,  𝜓′′ 𝜃 = Var𝜇𝜃

𝑋

• Recall the range bound for variance:

𝜓′′ 𝜃 = Var𝜇𝜃
𝑋 ≤ Τ𝑏 − 𝑎 2 4

• Now, we integrate 𝜓′′ twice from 0 to 𝜃 and using the fact that 𝜓 0 = 𝜓′ 0 = 0:

න
0

𝜃

𝜓′′ 𝜆 d𝜆 = 𝜓′ 𝜃 ,  න
0

𝜃

𝜓′ 𝜆 d𝜆 = 𝜓 𝜃  

⟹  𝜓 𝜃 = න
0

𝜃

න
0

𝑠

𝜓′′ 𝜆 d𝜆 d𝑠 ≤ න
0

𝜃

න
0

𝑠 1

4
𝑏 − 𝑎 2d𝜆 d𝑠 = න

0

𝜃 𝑠

4
𝑏 − 𝑎 2d𝑠 =

𝜃2

8
𝑏 − 𝑎 2

∎
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Lemma (MGF bound).  If 𝑎 ≤ 𝑋 ≤ 𝑏 then for every 𝜃 ∈ ℝ we have 

𝔼 𝑒𝜃 𝑋−𝔼 𝑋 ≤ 𝑒 Τ𝜃2 𝑏−𝑎 2 8

• This lemma implies that

Pr 𝑍′ ≥ 𝜖𝑛 ≤ inf
𝜃>0

𝑒−𝜃𝜖𝑛 ෑ

𝑖

𝔼 𝑒𝜃𝑋𝑖
′

≤ inf
𝜃>0

𝑒−𝜃𝜖𝑛 𝑒 Τ𝜃2 𝑏−𝑎 2 8
𝑛

= exp inf
𝜃>0

−𝜃𝜖𝑛 + Τ𝜃2 𝑏 − 𝑎 2𝑛 8

• The quadratic function is minimized at 𝜃 =
4𝜖

𝑏−𝑎 2:

Pr 𝑍 − 𝔼 𝑍 ≥ 𝜖𝑛 = Pr 𝑍′ ≥ 𝜖𝑛 ≤ 𝑒
−

2𝜖2

𝑏−𝑎 2𝑛

• What about the other direction (the lower tail)?
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Lemma (MGF bound).  If 𝑎 ≤ 𝑋 ≤ 𝑏 then for every 𝜃 ∈ ℝ we have 

𝔼 𝑒𝜃 𝑋−𝔼 𝑋 ≤ 𝑒 Τ𝜃2 𝑏−𝑎 2 8

• For the lower tail:

Pr 𝑍 − 𝔼 𝑍 ≤ −𝜖𝑛 = Pr 𝑍′ ≤ −𝜖𝑛

= Pr 𝑒𝜃𝑍′
≥ 𝑒−𝜃𝜖𝑛  𝜃 ≤ 0

≤ inf
𝜃≤0

𝑒+𝜃𝜖𝑛 ෑ

𝑖

𝔼 𝑒𝜃𝑋𝑖
′

= exp inf
𝜃≤0

𝜃𝜖𝑛 + Τ𝜃2 𝑏 − 𝑎 2𝑛 8

= exp −
2𝜖2

𝑏 − 𝑎 2
𝑛
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Theorem (Hoeffding’s inequality).

Let 𝑋1, … , 𝑋𝑛 be independent real random variables such that 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖  for all 𝑖 ∈ 𝑛 . 

Let 𝑍 ≔ σ𝑖=1
𝑛 𝑋𝑖  and introduce the variance proxy

𝜈 ≔
1

4
෍

𝑖=1

𝑛

𝑏𝑖 − 𝑎𝑖
2 .

Then

Pr 𝑍 − 𝔼 𝑍 ≥ 𝑡 𝜈 ≤ 2𝑒− Τ𝑡2 2 ∀𝑡 ≥ 0

➢ For our biased coin problem, 𝑋𝑖 ∈ 0,1  and thus, 𝜈 = Τ𝑛 4

Pr 𝑍 − 𝔼 𝑍 ≥ 𝜖𝑛 ≤ 2𝑒−2𝜖2𝑛 ≤ 𝛿 ⟹  𝑛 ≥
1

2𝜖2
log

2

𝛿

Chebyshev:

𝑛 ≥
𝑝 1 − 𝑝

𝜖2

1

𝛿
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In the whole proof, there are only two inequalities:

1. By Markov inequality, we obtain the so-called Laplace transform:

Pr 𝑍 − 𝔼 𝑍 ≥ 𝑡 ≤ inf
𝜃≥0

𝑒−𝑡𝜃 ෑ

𝑖

𝔼 𝑒𝜃(𝑋𝑖−𝔼 𝑋𝑖 ) , 

Pr 𝑍 − 𝔼 𝑍 ≤ −𝑡 ≤ inf
𝜃≤0

𝑒𝑡𝜃 ෑ

𝑖

𝔼 𝑒𝜃(𝑋𝑖−𝔼 𝑋𝑖 )

2. MGF bound:  If 𝑎 ≤ 𝑋 ≤ 𝑏 then for every 𝜃 ∈ ℝ we have 

𝔼 𝑒𝜃 𝑋−𝔼 𝑋 ≤ 𝑒 Τ𝜃2 𝑏−𝑎 2 8

• In our case, 𝑋1, … , 𝑋𝑛 are iid Bernoulli random variables

𝔼 𝑒𝜃 𝑋𝑖−𝑝 = 𝑝𝑒𝜃 1−𝑝 + 1 − 𝑝 𝑒−𝜃𝑝 = 𝑒−𝜃𝑝 1 + 𝑒𝜃 − 1 𝑝

Cramér’s theorem:

This is tight for iid sum
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Pr 𝑍 − 𝔼 𝑍 ≥ 𝑡 ≤ inf
𝜃≥0

𝑒−𝑡𝜃 ෑ

𝑖

𝔼 𝑒𝜃(𝑋𝑖−𝔼 𝑋𝑖 )

= inf
𝜃≥0

𝑒−𝑡𝜃𝑒−𝑛𝑝𝜃 1 + 𝑒𝜃 − 1 𝑝
𝑛

≤ inf
𝜃≥0

𝑒−𝑡𝜃𝑒−𝑛𝑝𝜃𝑒𝑛𝑝 𝑒𝜃−1

= exp −𝑛𝑝 + inf
𝜃≥0

− 𝑡 + 𝑛𝑝 𝜃 + 𝑛𝑝𝑒𝜃

• The minimizer is at 𝜃 = log
𝑡+𝑛𝑝

𝑛𝑝
:

Pr 𝑍 − 𝔼 𝑍 ≥ 𝑡 ≤ exp −𝑛𝑝 − 𝑡 + 𝑛𝑝 log
𝑡 + 𝑛𝑝

𝑛𝑝
+ 𝑡 + 𝑛𝑝

= exp − 𝑡 + 𝑛𝑝 log
𝑡 + 𝑛𝑝

𝑛𝑝
+ 𝑡
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Pr 𝑍 − 𝔼 𝑍 ≥ 𝑡 ≤ inf
𝜃≥0

𝑒−𝑡𝜃 ෑ

𝑖

𝔼 𝑒𝜃(𝑋𝑖−𝔼 𝑋𝑖 )

= inf
𝜃≥0

𝑒−𝑡𝜃𝑒−𝑛𝑝𝜃 1 + 𝑒𝜃 − 1 𝑝
𝑛

≤ inf
𝜃≥0

𝑒−𝑡𝜃𝑒−𝑛𝑝𝜃𝑒𝑛𝑝 𝑒𝜃−1

= exp −𝑛𝑝 + inf
𝜃≥0

− 𝑡 + 𝑛𝑝 𝜃 + 𝑛𝑝𝑒𝜃

• The minimizer is at 𝜃 = log
𝑡+𝑛𝑝

𝑛𝑝
:

Pr 𝑍 − 𝔼 𝑍 ≥ 𝑡𝑛𝑝 ≤ exp −𝑛𝑝 − 𝑡𝑛𝑝 + 𝑛𝑝 log
𝑡𝑛𝑝 + 𝑛𝑝

𝑛𝑝
+ 𝑡𝑛𝑝 + 𝑛𝑝

= exp − 1 + 𝑡 𝑛𝑝 log 1 + 𝑡 + 𝑡𝑛𝑝

=
𝑒𝑡

1 + 𝑡 1+𝑡

𝑛𝑝
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Pr 𝑍 − 𝔼 𝑍 ≤ −𝑡𝑛𝑝 ≤ inf
𝜃≤0

𝑒𝑡𝑛𝑝𝜃 ෑ

𝑖

𝔼 𝑒𝜃(𝑋𝑖−𝔼 𝑋𝑖 )

= inf
𝜃≤0

𝑒𝑡𝑛𝑝𝜃𝑒−𝑛𝑝𝜃 1 + 𝑒𝜃 − 1 𝑝
𝑛

≤ inf
𝜃≤0

𝑒𝑡𝑛𝑝𝜃𝑒−𝑛𝑝𝜃𝑒𝑛𝑝 𝑒𝜃−1

= exp −𝑛𝑝 + inf
𝜃≤0

𝑡 − 1 𝑛𝑝𝜃 + 𝑛𝑝𝑒𝜃

• The minimizer is at 𝜃 = log 1 − 𝑡 :

Pr 𝑍 − 𝔼 𝑍 ≤ −𝑡𝑛𝑝 ≤ exp −𝑛𝑝 − 1 − 𝑡 𝑛𝑝 log 1 − 𝑡 + 1 − 𝑡 𝑛𝑝

= exp − 1 − 𝑡 𝑛𝑝 log 1 − 𝑡 − 𝑡𝑛𝑝

=
𝑒−𝑡

1 − 𝑡 1−𝑡

𝑛𝑝
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Theorem (Chernoff bound). 

Let 𝑋1, … , 𝑋𝑛 be iid Bernoulli random variables with 𝔼 𝑋𝑖 = 𝑝. Let 𝑍 ≔ σ𝑖=1
𝑛 𝑋𝑖. Then

Pr 𝑍 ≥ 1 + 𝑡 𝑛𝑝 ≤
𝑒𝑡

1 + 𝑡 1+𝑡

𝑛𝑝

 ∀𝑡 ≥ 0

Pr 𝑍 ≤ 1 − 𝑡 𝑛𝑝 ≤
𝑒−𝑡

1 − 𝑡 1−𝑡

𝑛𝑝

 ∀𝑡 ∈ 0,1

Notice the asymmetric tails:

• For the right tail, when 𝑡 is large, it behaves like 𝑡−𝑡 (i.e., a Gamma distribution)

• For the left tail, when 𝑡 is small, it behaves like 𝑒− Τ𝑡2 2 (i.e., a Gaussian distribution)

log ⋯ = −𝑡 − 1 − 𝑡 log 1 − 𝑡 = −𝑡 − 1 − 𝑡 −𝑡 − Τ𝑡2 2 + 𝒪 𝑡3 = − Τ𝑡2 2 + 𝒪 𝑡3
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• 𝑍 ∼ Bin 𝑛, 𝑝 → Poi 𝑛𝑝   for large 𝑛

• The probability of a Poisson random variable 𝑋 ∼ Poi 𝑛𝑝  at 𝑘 > 𝑛𝑝 is 

𝑒−𝑛𝑝 𝑛𝑝 𝑘

𝑘!
= 𝑒−Θ 𝑘 log 𝑘 < 𝑒−Ω 𝑘2

(Source: Joel A. Tropp)
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Theorem (Chernoff bound, user-friendly version). 

Let 𝑋1, … , 𝑋𝑛 be independent Bernoulli random variables with 𝔼 𝑋𝑖 = 𝑝𝑖. Let 𝑍 ≔

σ𝑖=1
𝑛 𝑋𝑖  and 𝜇 ≔ 𝔼 𝑍 . Then

Pr 𝑍 ≥ 1 + 𝑡 𝜇 ≤ 𝑒−
𝑡2

2+𝑡
𝜇  ∀𝑡 ≥ 0

Pr 𝑍 ≤ 1 − 𝑡 𝜇 ≤ 𝑒− Τ𝑡2𝜇 2 ∀𝑡 ∈ 0,1

Moreover,

Pr 𝑍 − 𝜇 ≥ 𝑡𝜇 ≤ 2𝑒− Τ𝑡2𝜇 3  ∀𝑡 ∈ 0,1
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Theorem (Chernoff bound, user-friendly version). 

Let 𝑋1, … , 𝑋𝑛 be independent Bernoulli random variables with 𝔼 𝑋𝑖 = 𝑝𝑖. Let 𝑍 ≔

σ𝑖=1
𝑛 𝑋𝑖  and 𝜇 ≔ 𝔼 𝑍 . Then

Pr 𝑍 ≥ 1 + 𝑡 𝜇 ≤ 𝑒−
𝑡2

2+𝑡
𝜇  ∀𝑡 ≥ 0

Proof.

• log
𝑒𝑡

1+𝑡 1+𝑡 = 𝑡 − 1 + 𝑡 log 1 + 𝑡

• log 1 + 𝑡 ≥
2𝑡

2+𝑡

• 𝑡 − 1 + 𝑡 log 1 + 𝑡 ≤ 𝑡 − 1 + 𝑡
2𝑡

2+𝑡
=

−𝑡2

2+𝑡

∎
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Theorem (Chernoff bound, user-friendly version). 

Let 𝑋1, … , 𝑋𝑛 be independent Bernoulli random variables with 𝔼 𝑋𝑖 = 𝑝𝑖. Let 𝑍 ≔

σ𝑖=1
𝑛 𝑋𝑖  and 𝜇 ≔ 𝔼 𝑍 . Then

Pr 𝑍 − 𝜇 ≥ 𝑡𝜇 ≤ 2𝑒− Τ𝑡2𝜇 3  ∀𝑡 ∈ 0,1

➢ For our biased coin question, 

Pr 𝑍 − 𝑛𝑝 ≥ Τ𝜖 𝑝 𝑛𝑝 ≤ 2 exp −
𝜖2𝑛

3𝑝
≤ 𝛿 ⟹  𝑛 ≥

3𝑝

𝜖2
log

2

𝛿
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Theorem (Chernoff for positive, bounded random variables). 

Let 𝑋1, … , 𝑋𝑛 be independent random variables such that 0 ≤ 𝑋𝑖 ≤ 𝑏 for all 𝑖 ∈ 𝑛 . Let 

𝑍 ≔ σ𝑖=1
𝑛 𝑋𝑖  and 𝜇 ≔ 𝔼 𝑍 . Then

Pr 𝑍 ≥ 1 + 𝑡 𝜇 ≤
𝑒𝑡

1 + 𝑡 1+𝑡

Τ𝜇 𝑏

 ∀𝑡 ≥ 0

Pr 𝑍 ≤ 1 − 𝑡 𝜇 ≤
𝑒−𝑡

1 − 𝑡 1−𝑡

Τ𝜇 𝑏

 ∀𝑡 ∈ 0,1
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• When 𝑋 is a Bernoulli random variable,

𝔼 𝑒𝜃𝑋 = 1 + 𝑒𝜃 − 1 𝑝

• If we only know 0 ≤ 𝑋 ≤ 𝑏, then by the convexity of 𝑒𝜃𝑥 and Jensen inequality,

𝑒𝜃𝑥 ≤ 1 + Τ𝑒𝜃𝑏 − 1 𝑥 𝑏 ∀𝑥 ∈ 0, 𝑏

• Thus, 

𝔼 𝑒𝜃𝑋 ≤ 1 +
𝑒𝜃𝑏 − 1

𝑏
𝔼 𝑋

• Following the same proof, you’ll get the term involving

ෑ

𝑖

1 +
𝑒𝜃𝑏 − 1

𝑏
𝔼 𝑋𝑖 = exp ෍

𝑖

log 1 +
𝑒𝜃𝑏 − 1

𝑏
𝔼 𝑋𝑖 ≤ exp ෍

𝑖

𝑒𝜃𝑏 − 1

𝑏
𝔼 𝑋𝑖

= exp
𝑒𝜃𝑏 − 1

𝑏
𝜇

𝑒𝜃𝑥
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Theorem (Chernoff-Hoeffding inequality). 

Let 𝑋1, … , 𝑋𝑛 be iid Bernoulli random variables with 𝔼 𝑋𝑖 = 𝑝. Let 𝑍 ≔ σ𝑖=1
𝑛 𝑋𝑖. Then

Pr 𝑍 ≥ (𝑝 + 𝜖)𝑛 ≤ 𝑒−𝑛𝐷 𝑝+𝜖ԡ𝑝  ∀𝜖 ∈ 0,1 − 𝑝

Pr 𝑍 ≤ 𝑝 − 𝜖 𝜇 ≤ 𝑒−𝑛𝐷 𝑝−𝜖ԡ𝑝  ∀𝜖 ∈ 0, 𝑝

𝐷 𝑝ԡ𝑞  is the relative entropy defined as:

𝐷 𝑝ԡ𝑞 = 𝑝 log
𝑝

𝑞
+ 1 − 𝑝 log

1 − 𝑝

1 − 𝑞

Proof idea:

• Apply the Laplace transform and use the closed-form of MGF (same as our proofs)

• No more approximation and directly optimize it
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Given a hypergraph (or a set system), how to color each vertex in red or blue such that in each 

hyperedge (or set), the number of red vertices is roughly equal to the number of blue vertices?

• Universe 𝑈 = 1,2, … , 𝑛

• Set system ℱ = 𝑆1, 𝑆2, … , 𝑆𝑚

• For a coloring 𝜒: 𝑛 → −1,1 , its discrepancy is defined as:

Disc 𝜒 ≔ max
𝑖∈[𝑚]

෍
𝑗∈𝑆

𝜒 𝑗

• And the discrepancy of the set system is defined as 

Disc ℱ ≔ min
𝜒

Disc 𝜒 Disc ℱ = 1
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Lemma.  Let ℱ be a collection of 𝑚 subsets of 𝑛 . Then there is a coloring 𝜒: 𝑛 → −1,1  such 

that Disc 𝜒 = 𝒪 𝑛 log 𝑚 .

Proof.

• Let 𝜒 be a uniformly random coloring, i.e., we assign ±1 to each element iid uniformly at random

• 𝔼 𝜒 𝑖 = 0 for any 𝑖 ∈ 𝑛

• For each subset 𝑆 ∈ ℱ, let 𝑍 ≔ σ𝑖∈𝑆 𝜒 𝑖 . By Hoeffding’s inequality,

Pr 𝑍 ≥ 𝑡 𝜈 ≤ 2𝑒− Τ𝑡2 2 ,  𝜈 =
1

4
෍

𝑖∈𝑆

1 − −1
2

= 𝑆 ≤ 𝑛

𝑡 ≔ 2 log 𝑚  ⟹  Pr 𝑍 ≥ 2 𝑛 log 𝑚 ≤ 2𝑒−2 log 𝑚 = 2/𝑚2

• By union bound over all 𝑚 subsets, with probability ≥ 1 − 𝑚 ⋅ Τ2 𝑚2 > 0, disc 𝜒 ≤ 2 𝑛 log 𝑚

∎
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Lemma.  Let ℱ be a collection of 𝑚 subsets of 𝑛 . Then there is a coloring 𝜒: 𝑛 → −1,1  such 

that Disc 𝜒 = 𝒪 𝑛 log 𝑚 .

• This bound is not tight!

Theorem (Six standard deviations suffice, Spencer ’85).

Let ℱ be a collection of 𝑛 subsets of 𝑛 . Then there is a coloring 𝜒: 𝑛 → −1,1  such that 

Disc 𝜒 ≤ 6 𝑛.

More generally, if ℱ is a collection of 𝑚 ≥ 𝑛 subsets of 𝑛 . Then there is a coloring 𝜒: 𝑛 →

−1,1  such that Disc 𝜒 ≤ 𝒪 𝑛 log Τ2𝑚 𝑛 .
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Theorem (Bernstein). 

Let 𝑋1, … , 𝑋𝑛 be independent random variables such that 𝑋𝑖 − 𝔼 𝑋𝑖 ≤ 𝑏 for all 𝑖 ∈ 𝑛 . 

Let 𝑍 ≔ σ𝑖=1
𝑛 𝑋𝑖. Then

Pr 𝑍 − 𝔼 𝑍 ≥ 𝑡 ≤ 2 exp −
Τ𝑡2 2

Var 𝑍 + Τ𝑏𝑡 3
 ∀𝑡 > 0

• For large 𝑡, the tail bound looks like exp − Τ2𝑡 3𝑏 , an exponential tail

• For small or medium 𝑡, the tail bound looks like exp − Τ𝑡2 2Var 𝑍 , a Gaussian tail with the 

true variance (instead of the variance proxy 𝜈 in Hoeffding’s inequality)
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